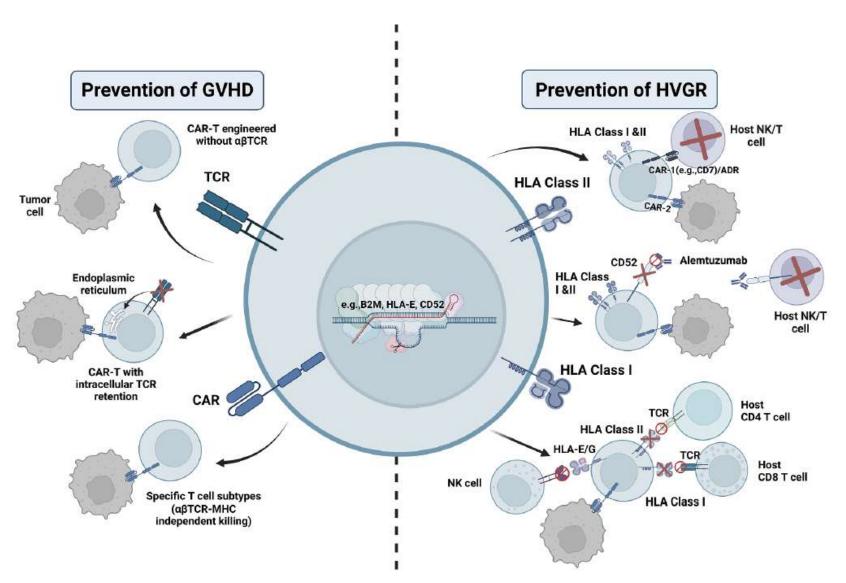

Allogeneic CD19-targeting T cells for treatment-refractory systemic lupus erythematosus: a phase 1 trial

Xiaobing Wang^{1,19}, Yi Zhang^{1,19}, Huimin Wang^{2,19}, Xin Wu^{1,19}, Chao He^{3,19}, Suxian Lin⁴, Kun Pang⁵, Yang Li⁶, Yue Chen ¹⁰, Xiaojing Tang⁸, Xin Liu¹, Jiazheng Wang¹, Songying Ye¹, Ran Yan ¹⁰, Tongxiang Guan¹, Bing Dai⁸, Jing Lu⁹, Haiyan He⁹, Li Lin¹, Hongjuan Lu¹, Ting Li¹, Ling Zhou¹, Lingying Ye¹, Juan Zhao¹, Yanfang Liu ¹⁰, Na Ta¹⁰, Jun Wu⁸, Wanshi Cai¹¹, Zhe Wan⁶, Shasha Zhang⁶, Ruya Sun², Xueqiang Zhao^{2,6}, Jiasheng Wang¹², Yong Lin¹³, Beifang Ning¹³, Zhengqing Zhao¹⁴, Xiaofeng Tang¹⁵, Juan Du ¹⁰, Zhiguo Mao⁸, Yanran He¹⁶, Hongli Zheng^{6,20}, Lingyun Sun^{17,20}, Xin Lin ¹⁰, Xin Lin

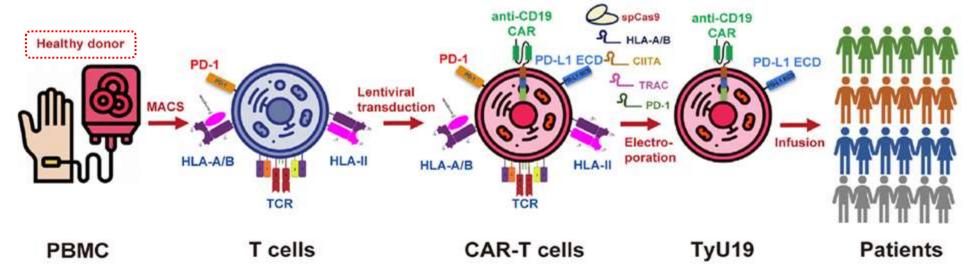
[Nat Med . 2025 Aug 27. Online ahead of print.] (doi: 10.1038/s41591-025-03899-x.)

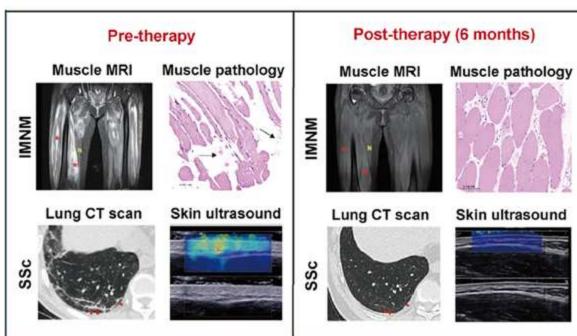
Autologous CAR-TとAllogeneic CAR-T


• 患者由来細胞を用いたautologous な CD19 CAR-Tは, 自己免疫疾患の 実績があるが, 高コスト, 長期間の免疫治療中断, キメラ抗原受容体が ゲノムにランダムに挿入されるリスクがある.

- 健常人ドナー由来で、 多重遺伝子編集 (TCR、 CD52などを抑制) された、 allogeneic な CAR-Tが 開発されている (universal CAR-T).
- 多くの患者に, 既製品 としてすぐ投与できる (off the shelf).

[Transl Oncol. 2025;51:102147.]


Allogeneic CAR-Tの問題点



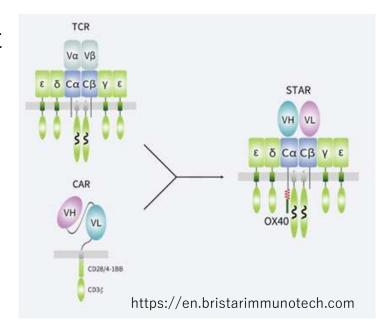
- **GVHD**が起きる (autoでは認めない)
- HVGR (宿主対移植片 反応) による除去
- GVHDを回避する: αβTCRを抑制する
- HVGRを回避する: hostのHLA class I, II 認識を回避する

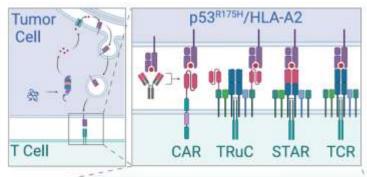
[Transl Oncol. 2025;51:102147.]

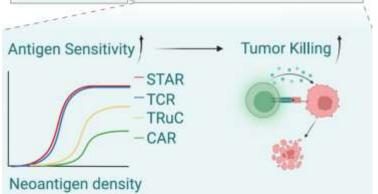
IMNM, SScを対象としたallogeneic CAR-T

- 抄読論文と同じgroupによる, 健康ドナー由来のallogeneic CD19 CAR-Tの報告.
- 重症難治性のIMNMまたはSScに対する臨床的有効性を示した.

[Cell. 2024;187(18):4890-4904.e9.]

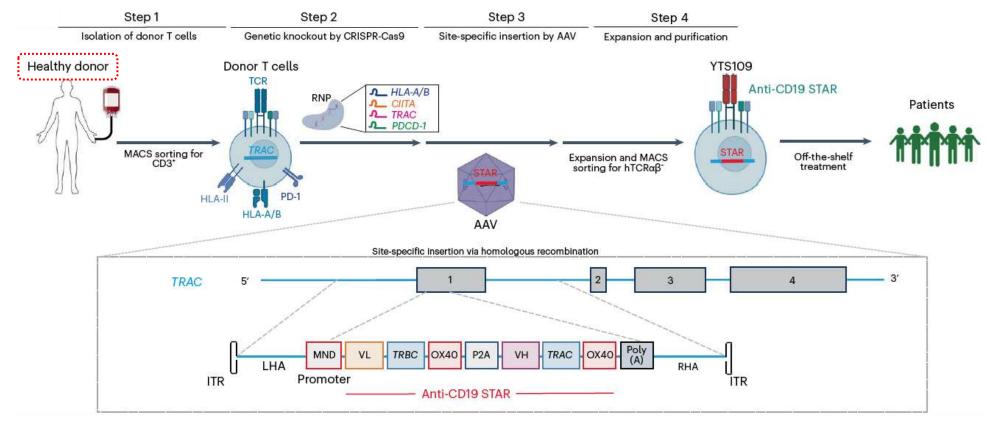

Autologous CAR-TとAllogeneic CAR-Tの比較


観点	自家CD19 CAR-T	Universal CAR-T(同種: Off the shelf)			
細胞の由来	患者自身のT細胞	健康ドナー由来のT細胞			
製造工程	個別製造:アフェレーシスで採取→遺伝子導入→ 数週間培養	大量製造:健康ドナー細胞を加工し冷凍,必要時に 解凍投与			
使用までの時間	数週間(製造に依存)	数日~即日(在庫から投与可能)			
品質	患者状態に依存(治療歴や免疫抑制の影響で質が 低い場合あり)	健常ドナー由来で比較的均質・高品質			
コスト	高額(患者ごとに製造)	量産効果で低減が期待される			
遺伝子編集	なし	TRAC KO(TCR削除), HLA KO, PD-1 KOなど多重編集で低免疫原性化			
免疫リスク	患者由来なのでGVHDなし。 長期存在により感染症リスク・腫瘍化の懸念あり	宿主免疫による拒絶・排除のリスクあり。 GVHD回避は編集に依存			
持続性	長期間生存し得る(再発抑制には有効だが, 感染症リスクが上昇)	宿主免疫により数週~数か月で <mark>消退しやすい</mark> (免疫リセット後に退場する挙動)			
臨床実績	B細胞性悪性腫瘍や自己免疫疾患 (難治性SLEなど) で多数の寛解例	悪性腫瘍で臨床試験中(UCART19, 22, 123, CS1). 自己免疫疾患は <mark>Cell 2024</mark> , Nat Med 2025が初期報告			


STAR: Synthetic TCR and antigen receptor

- STAR: 抗原認識部位 (scFv) とTCR定常部位を直接結合した 二重鎖キメラ受容体 (BriSTAR Immunotech社が開発)
- CARのHLA非依存性腫瘍標的化能力と, TCRの抗原結合能力 を組み合わせて, より優れた腫瘍殺傷力をもつ.
- CD19標的の自家STAR-Tの第I相試験では, 難治B-ALL 18例

に投与. 完全寛解率は高く, 安全性 は受容可能 [Am J Hematol. 2022;97:992-1004.]



- 固形腫瘍モデルにおける, CAR, TRuC, STARの比較実験. STARは, CARと比較して,高いサイトカイン産生,より高い腫瘍細胞殺傷能,低いexhaustionを示した.
- STARは、CARと比較して、ヒト腫瘍細胞移植マウスの生存延長効果を示した. [Cell Rep. 2024;43:114949.]

研究デザイン

- 試験デザイン: phase 1 介入試験
- ・対象:ループス腎炎を合併した重症難治性SLE 5名
- 介入:①リンパ球除去療法: Fludarabine (25-30 mg/m²/日) Cyclophosphamide (1,000 mg/m²)
 - ② 同種 抗CD19 STAR-T細胞 (YTS109): 3×106個/体重(kg)
- 主要評価項目:安全性と3ヶ月目のSRI-4
- ・副次評価項目:6か月目までの臨床的寛解とQOL

同種 抗CD19 STAR-T細胞 (YTS109) の作製

- 健常人ドナー末梢血からMACS sortingでT細胞を採取
- CRISPR-Cas9ゲノム編集を用いて TRAC (TCRαβ), HLA-A/B (HLA-class I), CIITA (HLA-class II), PDCD-1 (PD-1; APC-T細胞間反応を減弱) をノックアウトする.
- 同時に 抗CD19 STARコンストラクトをTRAC遺伝子座に選択的に組み込む.

患者背景

Characteristic	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age (years)	41	36	23	23	38
Sex	Female	Female	Male	Female	Female
Disease duration (years)	18	3	12	11	30
Autoantibodies					
Anti-dsDNA	+	-	+	+	+
Anti-Smith	+	+	-	-	+
ANA	+	+	+	+	+
Organ involvement					
Kidney	+	+	+	+	+
LN classification (ISN/RPS ¹⁶)	IV+V	III+V	III+V	IV+V	IV+V
Skin	+	-	+	+	+
Mucosa	-	-	-	+	+
Cardiac system	-	+	-	-	+
Vasculature	-	-	+	-	+
Pancreas	-	-	-	-	+
Blood system	+	+	-	+	+
Joints	-	+	+	-	-
SLEDAI-2K (score)	20	20	17	16	32
SLE-DAS (score)	23.27	42.02	20.89	15.06	39.03
Previous treatments					
Glucocorticoids	+	+	+	+	+
CTX	+	+	+	+	+
Mycophenolate mofetil	+	-	+	+	+
Azathioprine	-	-	-	-	+
Cyclosporine	-	-	-	+	_
Tacrolimus	+	-	+	+	-
Rituximab	-	+	-	-	-
Belimumab	+	-	-	+	+
Telitacicept	+	-	+	-	-
Hydroxychloroquine	+	+	-	-	+
Other	_	-	IVIG	-	-

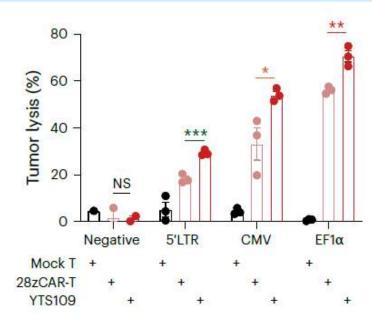
• 患者5名(女性4, 男性1)

• 年齡:23~41歳

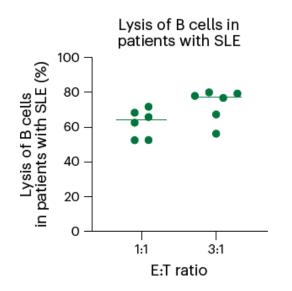
• 罹病期間:3~30年

● 増殖性LN:III+V or IV+V

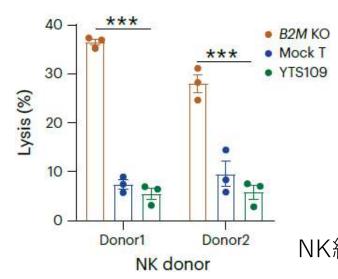
他臓器病変:全例合併あり (皮膚,血液,筋骨格)

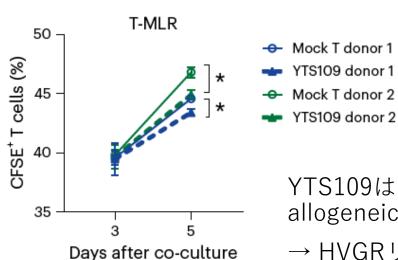

過去の免疫抑制療法:GC, CY, MMF, TAC, RTX, BEL

• 疾患活動性は高い:

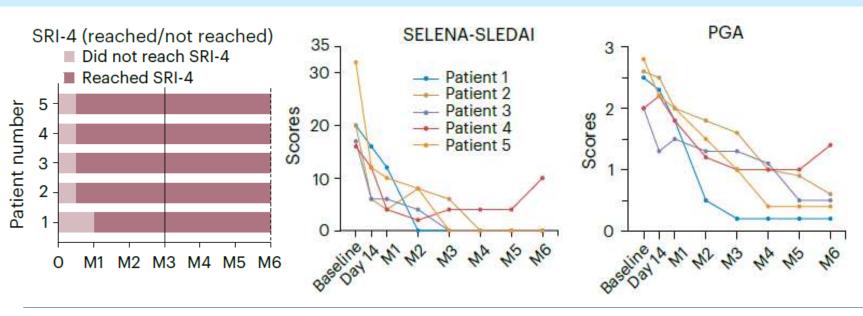

SLEDAI-2K: 16-32

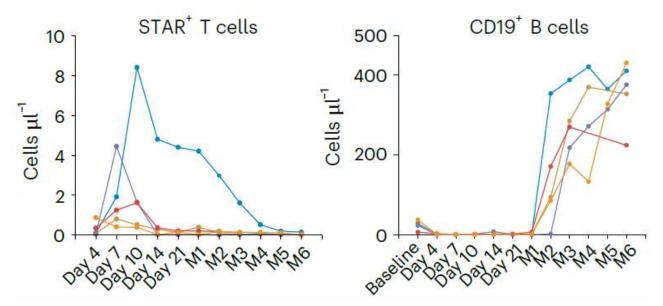
SLE-DAS: 15.06-42.02


STAR T細胞の機能評価


CD19低発現Raji細胞 に対する細胞傷害活 性が CAR-Tより強い

SLEのBは溶解する


NK細胞による溶解が低下

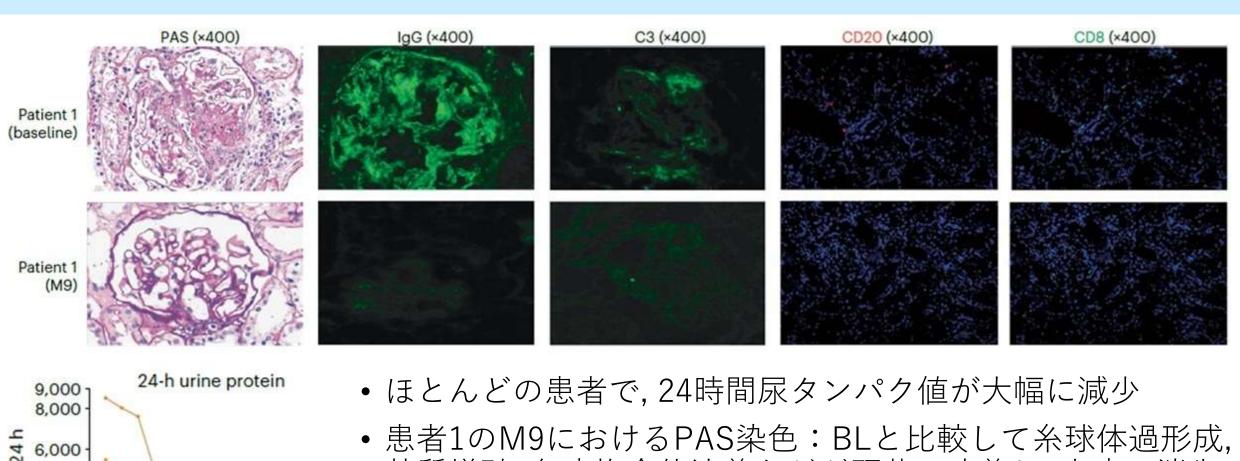

YTS109は共培養された allogeneic Tの増殖を抑制

→ HVGRリスクが低いと示唆

治療効果と細胞数の変化

- 5名全員 M3にSRI-4達成し、M6まで維持した。
- 患者4はM6に軽度再燃.
- M6までに, 患者4以外が DORIS寛解.

- STAR+ T細胞の増加は2週間以内に ピークに達するが, 個人差が大きい.
- B細胞減少は $1\sim2$ ヶ月間持続する. その後, baselineを超えるレベルまで 増加する.

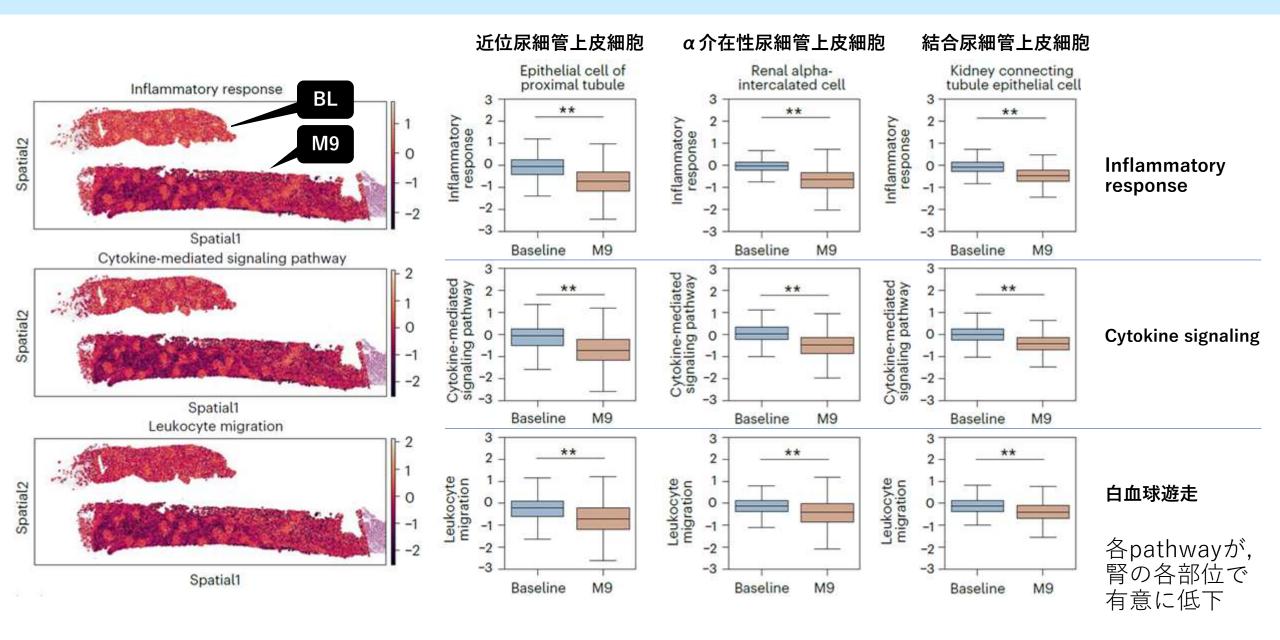

有害事象

Variable	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
CRS (grade)	1	0	1	0	0
ICANS (grade)	0	0	0	0	0
ICAHT (>28 days)					
Anemia	-	-	-	+	+
Thrombocytopenia	-	-	-	-	-
Leukocytopenia	+	+	+	+	+
Hypoalbuminemia	+	+	-	+	_
Infection	UTI	Conjunctivitis	-	-	-

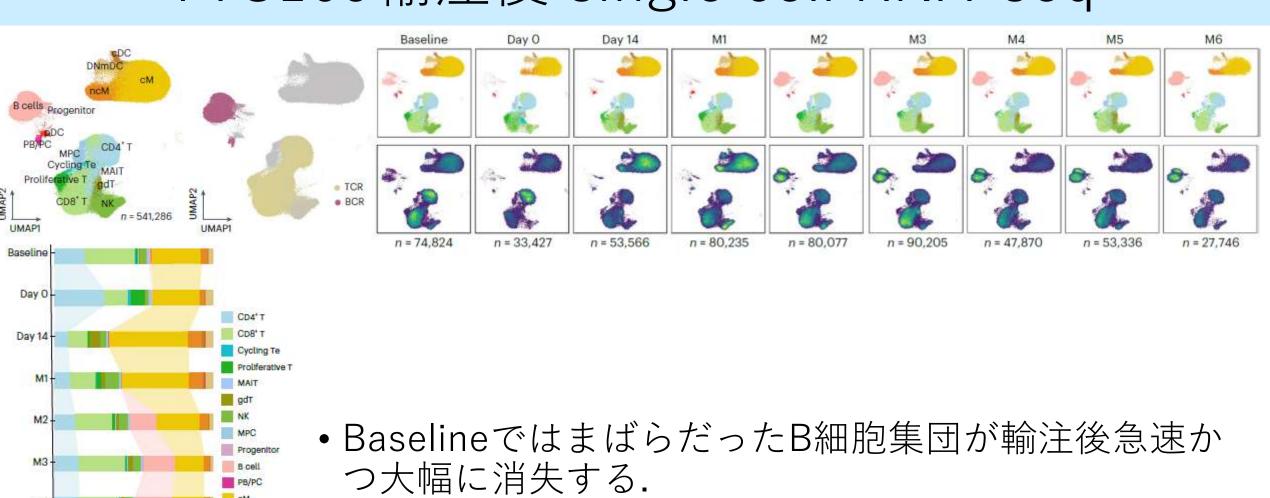
ICAHT, immune effector cell-associated hematotoxicity; UTI, urinary tract infection.

- ・ 重篤な有害事象はなかった.
- CRS: 2名でグレード1
- ICANS (免疫エフェクター細胞 関連神経毒性症候群): なし
- ICHAT: 全員で一過性白血球 減少, 患者4/5で軽度の貧血.
- 感染症:患者1で尿路感染症, 患者2で結膜炎
- GVHDはなし.

ループス腎炎の変化



4,000


2,000

- 患者1のM9におけるPAS染色:BLと比較して糸球体過形成, 基質増殖,免疫複合体沈着などが顕著に改善し,炎症の消失 と構造的修復を反映していた.
- Baselineの腎臓のCD8+ T, CD20+ B浸潤がM9までに著しく減少し, 腎炎症の改善を示した.

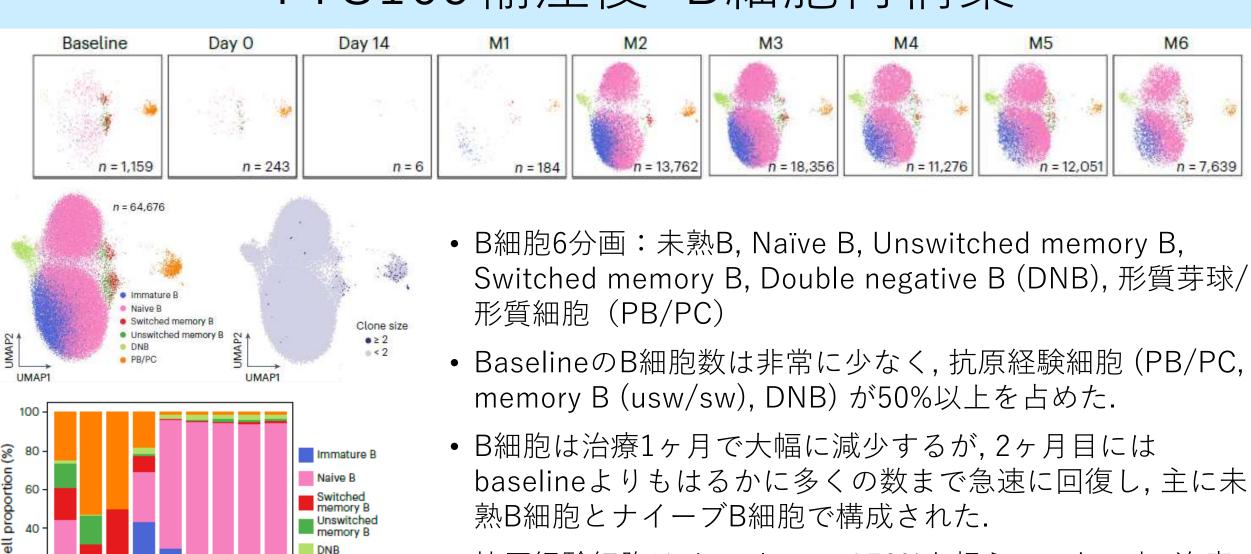
腎生検標本の空間トランスクリプトーム解析

YTS109輸注後 single cell RNA-seq

M4-


M5-

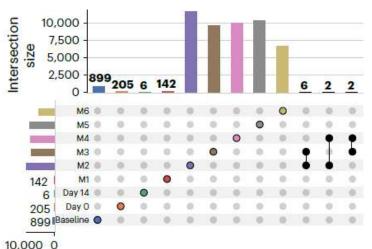
M6

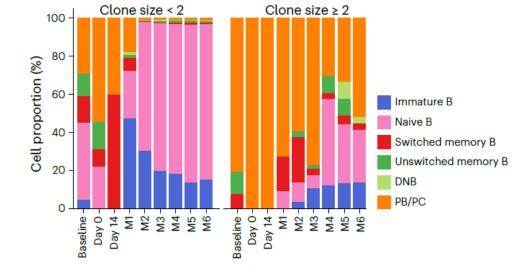

Proportion (%)

- M2後に、以前よりはるかに大きなB細胞集団が再構 成されたことを示している.

YTS109輸注後 scRNA-seq pathway解析

YTS109輸注後 B細胞再構築


• 抗原経験細胞は, baselineでは50%を超えていた一方, 治療後はモニタリング期間を通して5%未満を維持した.


YTS109輸注後 B細胞再構築

- BaselineではIgG, IgA重鎖が多いが, B細胞再構築後著減する.
- IgM, IgD重鎖が増加する.

- Baselineのクローン増殖を欠くPB/PCは、 YTS109による除去後消失する.
- B細胞再構築後,未熟B, naïve Bがクローン増殖 していることが確認される。

- 異なる時点の重複クローンを示す交差プロット.
- M2かM3で新たに出現したBCRのみ, その後に再検出された.
- 過去のBCRがリセットされ,新たなBCRに置換されたことを示す.

結果のまとめ

- 重症LNを合併した難治性SLE患者に対し、健康ドナー由来の抗 CD19 STAR T細胞製剤(YTS109)を初めて適用した報告.
- 患者5名全員が3か月でSRI-4を達成し,6か月まで維持した.
- 4名でSLEDAIが急速かつ持続的に低下したが, 1名でM6に軽度の 再燃を認めた.
- Allogeneic T製剤では、GVHDと、宿主によるHVGRが懸念されるが、 YTS109ではGVHDの兆候を示さず、優れた安全性プロファイルを 示した(軽度で一過性のCRSのみ)。
- 腎生検では、B細胞除去、炎症の消失、組織の修復が確認された。

Discussion

- 機能試験では、YTS109はB細胞に対して優れた細胞傷害性を示した.
- NK細胞による融解の感受性の低下と, 混合リンパ球反応試験におけるT細胞への刺激の減少は, 免疫回避プロファイルを裏付けている.
- YTS109は,自己CAR-T細胞と同等のB細胞枯渇を誘導したが, $1\sim2$ ヶ月後には消失し, $2\sim3$ ヶ月でB細胞が再構成された.患者を不必要に長期免疫抑制にさらさないという点で,自己CAR-T細胞やB細胞に対するbispecific antibodyより安全と考えられる.
- 自己CAR-T細胞では、ドナーによる品質の差が問題となる. YTB109では、5人全員が同じ製品を投与されたが、投与後の増殖は非常に活発(患者1)から最小限の増殖(患者5)まで多様だった. しかし、すべての患者においてB細胞が著しく減少し、製品としての均一性が担保された.

Limitation

- 単群試験であること, 症例数が少ないこと, 追跡期間が短いことは limitationである.
- 反応の持続性と一般化可能性を確認するには,より大規模で長期的な研究が必要である.
- 今後の研究では、STARのデザイン、同種異系由来であること、 TRAC標的挿入のそれぞれの役割も明らかにする必要がある.